
Chapter 6
COORDINATION AND AGREEMENT

1. Mutual Exclusion in Distributed Systems

 Distributed processes often need to communicate their activities. If a collection of
process share a resource or resources, then often mutual exclusion is required to
prevent interference and ensure consistency when accessing the resources.

 The concurrent access of processes to a shared resource executed in a mutually
exclusive manner in a distributed system is called distributed mutual exclusion.

 If two processes are allowed to concurrently be in competing critical sections, then
incorrect results may be computed –called a Race Condition. The process of ensuring
that this destructive interaction does not occur is called mutual exclusion (mutex). In
other words, mutual exclusion is the process of making only one process to enter into
the critical section at the same time.

 Mutual exclusion is a mechanism that prevent interference and ensure consistency
when accessing the resources by a collection of processes.

In single computer system, memory and other resources are shared between different
processes. The status of shared resources and the status of users is easily available in the
shared memory so with the help of shared variable (For example: Semaphores) mutual
exclusion problem can be easily solved.

In Distributed systems, we neither have shared memory nor a common physical clock and
there for we can not solve mutual exclusion problem using shared variables or local kernel.
To eliminate the mutual exclusion problem in distributed system approach based on
message passing is used.

The basic requirements for mutual exclusion mechanism are:
I. At most one process may execute in the critical section at a time.
II. A process is granted entry to critical section if no any other process is executing within

critical section.

2. Algorithms for Mutual Exclusion

There are three basic approaches to distributed mutual exclusion:

Non-token-based (permission based):
 In this method each process freely and equally competes for the right to use the shared

resource; requests are arbitrated by a central control site or by distributed agreement.
 It includes central coordinator algorithm, Lamport algorithm and Ricart-Agrawala

algorithm.

Token-based:
 In this method a logical token representing the access right to the shared resource is

passed in a regulated fashion among the processes; whoever holds the token is allowed
to enter the critical section.

 It includes Ricart-Agrawala second algorithm and token ring algorithm.

Quorom-based:
 In this method, each site requests a permission to execute critical section from a subset

of sites, known as quorom.

Non-token-based Algorithms

A. Central Coordinator Algorithm
A central coordinator grants permission to enter a CS. In this algorithm, a process that
wants to enter into a CS has to take a permission from a central coordinator.

Algorithm
 To enter a CS, a process sends a request message to the coordinator and then waits

for a reply (during this waiting period the process can continue with other work).
 The reply from the coordinator gives the right to enter the CS.
 After finishing work in the CS the process notifies the coordinator with a release

message.

Advantages
i. The scheme is simple and easy to implement.
ii. It requires only three messages per use of a CS (request, OK, release).

Disadvantages
i. System performance may degrade
ii. If coordinator crashes, we need an election algorithm.

B. Ricart-Agrawala Algorithm
 Ricart–Agrawala algorithm is an algorithm for mutual exclusion in a distributed

system proposed by Glenn Ricart and Ashok Agrawala. This algorithm is an extension
and optimization of Lamport’s Distributed Mutual Exclusion Algorithm. Like
Lamport’s Algorithm, it also follows permission based approach to ensure mutual
exclusion.

 In this algorithm, two type of messages (REQUEST and REPLY) are used and
communication channels are assumed to follow FIFO order.

 A site send a REQUEST message to all other site to get their permission to enter
critical section. A site send a REPLY message to other site to give its permission to
enter the critical section.

 A timestamp is given to each critical section request using Lamport’s logical
clock.Timestamp is used to determine priority of critical section requests. Smaller
timestamp gets high priority over larger timestamp. The execution of critical section
request is always in the order of their timestamp.

Algorithm:
i. To enter Critical section:

 When a site Si wants to enter the critical section, it sends a timestamped
REQUEST message to all other sites.

 When a site Sj receives a REQUEST message from site Si, it sends a REPLY
message to site Si if and only if Site Sj is neither requesting nor currently
executing the critical section.

 In case Site Sj is requesting, the timestamp of Site Si‘s request is smaller than
its own request. Otherwise the request is deferred by site Sj.

ii. To execute the critical section:
 Site Si enters the critical section if it has received the REPLY message from

all other sites.
iii. To release the critical section:

 Upon exiting site Si sends REPLY message to all the deferred requests.

Each process keeps its state w.r.t critical section which can be:
 Requested
 Held
 Released

Problems
 It is expensive to handle message traffic [2(n-1) messages] ((N – 1) request messages

and (N – 1) reply messages)
 Failure of one involved process blocks the progress.

Token Based Algorithm
A token is circulated in a logical ring. A process enters its CS if it has the token.

A. Ricart-Agrawala Second Algorithm
 A process is allowed to enter the critical section when it got the token. In order to get

the token it sends a request to all other processes competing for the same resource. The
request message consists of the requesting process’ timestamp (logical clock) and its
identifier.

 Initially the token is assigned arbitrarily to one of the processes. When a process Pi
leaves a critical section it passes the token to one of the processes which are waiting
for it; this will be the first process Pj, where j is searched in order [i+1, i+2, ..., n, 1,
2, ..., i-2, i-1] for which there is a pending request.

 If no process is waiting, Pi retains the token (and is allowed to enter the CS if it needs);
it will pass over the token as result of an incoming request.

Advantages:
 It requires only n-1 requests and one reply.
 Failure of process which is not holding token does not prevent progress.

B. Token Ring Algorithm
 The n processes are arranged in a logical ring as shown in given figure:

Algorithm:
 Token is initially given to one process.
 When a process requires to enter CS, it waits until it gets token from its left neighbor

and retains it. After it left CS, it passes token to its neighbor in clockwise direction.
 If a process gets token but does not require to enter CS, it immediately passes token

along the ring.

Problem:
 It adds load to the network as token should be passed even the process do not need it.
 If one process fails, no progress is possible until the faulty process is extracted from

the ring.
 Election process should be done if the process holding the token fails.

3. Distributed Elections
 Many distributed algorithms require one process to act as a coordinator or, in general,

perform some special role, and that coordinator is selected using an Election
Algorithm.

 A single leader makes system easy to understand, puts all the concurrency in the
system into a single place, reduces partial failure and adds a single place to look for
logs or metrics.

 Any process can be elected but only one process must be elected and all other
processes must agree on it. Election is started after a failure of current coordinator.

 Phases of Election Algorithm
 Select a leader with the highest priority.
 Inform all processes about the winner

 Election algorithm assumes that every active process in the system has a unique
priority number. The process with highest priority will be chosen as a new coordinator.
Hence, when a coordinator fails, this algorithm elects that active process which has
highest priority number.Then this number is send to every active process in the
distributed system.

 Need of Election algorithm
 Clock Synchronization
 Mutual Exclusion
 Any Distributed Computing

A. Bully Algorithm
 It assumes that each process knows identifiers of other processes and it can

communicate with process with higher identifier. It assumes that the system is
synchronous.

 It has three types of messages : election message, answer message and coordinator
message.

 Any process can crash during the election. This algorithm is applicable to elect a
leader in a distributed system connected with each other (say in a mesh topology). The
bully algorithm is a method in distributed computing for dynamically selecting a
coordinator by process ID number.

 When a process Pi detects a failure and election is to be held, it sends election message
to all processes with higher identifier and waits for the answer message.

Algorithm:
i. Rule for election process initiator

State Pi := ELECTION-ON
Pi sends election message to processes with higher identifier

Pi waits for answer message
if no answer message before timeout then
Pi is coordinator and sends coordinator message to all processes

else
Pi waits for coordinator message

if no coordinator message arrives before timeout then restart election
procedure

end if
end if

ii. Rule for handling incoming election message
Pi replies with an answer message to Pj

if state Pi := ELECTION-OFF then
start election procedure

end if

Best Case Scenario:
The process with second highest identifier notices coordinator's failure, it then selects
itself as coordinator and sends (n-2) coordinator messages.

Worst Case Scenario:
The process with lowest identifier indicates election. It sends (n-1) election messages
to processes which themselves initiate an election. So, O(n2) messages are required.

Another Example:

B. Ring Based Algorithm (Chang and Roberts algorithm)
 Chang and Roberts is a ring-based election algorithm used to find a process with the

largest identification. It is a useful method of election in decentralized distributed
computing where the systems are connected in a logical or physical ring.

 The processes are arranged in a logical ring. Each process knows address of one other
neighbor process in the clockwise direction. It assumes that the system is
asynchronous.

 The algorithm works for any number of processes N, and does not require any process
to know how many processes are in the ring. Is often referred as a ring algorithm.

Algorithm
i. Initially each process in the ring is marked as non-participant.
ii. A process that notices a lack of leader starts an election. It creates an election

message containing its UID. It then sends this message clockwise to its neighbor.
iii. Every time a process sends or forwards an election message, the process also

marks itself as a participant.

iv. When a process receives an election message it compares the UID in the message
with its own UID.
 If the UID in the election message is larger, the process unconditionally
forwards the election message in a clockwise direction.

 If the UID in the election message is smaller, and the process is not yet a
participant, the process replaces the UID in the message with its own UID,
sends the updated election message in a clockwise direction.

 If the UID in the election message is smaller, and the process is already a
participant (i.e., the process has already sent out an election message with a
UID at least as large as its own UID), the process discards the election
message.

 If the UID in the incoming election message is the same as the UID of the
process, that process starts acting as the leader.

v. When a process starts acting as the leader, it begins the second stage of the
algorithm.

vi. The leader process marks itself as non-participant and sends an elected message to
its neighbor announcing its election and UID.

vii. When a process receives an elected message, it marks itself as non-participant,
records the elected UID, and forwards the elected message unchanged.

viii.When the elected message reaches the newly elected leader, the leader discards
that message, and the election is over.

 Average Case:
 n/2 message need to reach maximal node.
 n message to return maximal node.
 n message to rotate elected message.
 Total message : 2n + n/2

 Worst Case:
 n-1 message to reach maximal node
 Total message : 3n -1

Another Example:

4. Multicast Communication
 The process of sending a message to multiple nodes is called multicast.
 It requires coordination and agreement. The essential feature of multicast is that a

process issues only one multicast operation to send a message to each of a group of
processes instead of issuing multiple send operations to individual processes. It is
efficient in utilization of bandwidth.

 Multicasting in computer network is a group communication, where a sender(s) send
data to multiple receivers simultaneously. It supports one – to – many and many – to –
many data transmission across LANs or WANs. Through the process of multicasting,
the communication and processing overhead of sending the same data packet or data
frame in minimized.

 A node can join a multicast group, and receives all messages sent to that group. The
sender sends only once: to the group address. The network takes care of delivering to
all nodes in the group.

5. Consensus
 The task of getting all processes in a group to agree on some specific value based on

the votes of each processes.
 All processes must agree upon the same value and it must be a value that was

submitted by at least one of the processes (i.e., the consensus algorithm cannot just
invent a value).

 Examples:
 Clock Synchronization
 Distributed Mutual Exclusion
 Leader Election
 Synchronizing Replications
 Distributed, fault-tolerant logging with globally consistent sequencing
 Managing group membership, etc.

